Contexto ambiental, percepção e desempenho de estudantes: uma análise relacional

Autores

Luiz Bueno da Silva
Ruan Eduardo Carneiro Lucas
Universidade Federal da Paraíba
Erivaldo Lopes de Souza
Universidade Federal da Paraíba

Palavras-chave:

Variáveis Ambientais; Percepção Ambiental; Desempenho; Estudantes universitários.

Sinopse

As necessidades do mundo atual resultam cada vez mais na utilização dos ambientes fechados, fazendo com que as pessoas fiquem submetidas a condições ambientais controladas por dispositivos mecânicos. Os ambientes de ensino são exemplos disso e as condições ambientais existentes são incompatíveis com as necessidades dos alunos, comprometendo o bem-estar e repercutindo no desempenho. Em decorrência desse cenário, este livro busca trazer uma compreensão da influência das variáveis ambientais e da percepção ambiental no desempenho de estudantes em ambientes de ensino climatizado de diferentes regiões brasileiras. Para isso, inicialmente será apresentado conceitos básicos referente as variáveis ambientais, aspecto cognitivo e métodos estatísticos. Posteriormente, o livro adentrará em um experimento realizado em sete ambientes de ensino localizado em diferentes regiões do Brasil. Nesse experimento os estudantes foram submetidos a diferentes condições climáticas, em que foram realizados testes de desempenho e avaliada da percepção ambiental. A partir disso, observou-se que: (1) três variáveis ambientais (temperatura do ar, umidade relativa e iluminação) influenciaram no desempenho cognitivo; (2) duas variáveis ambientais (temperatura do ar e iluminação) influenciaram no tempo de resposta do teste cognitivo aplicado;  (3) os estudantes apresentaram melhor desempenho quando a temperatura do ar estava no entorno de  22.4º ≤ Temperatura do ar ≤ 24.7°; e (4) o desempenho possuiu relação com as percepções ambientais (térmica e lumínica) dos alunos.

Downloads

Não há dados estatísticos.

Referências

ANDRIOLA, W. B. Avaliação do raciocínio verbal em estudantes do 2o grau. Estudos de Psicologia, v.2, p.277-285, 1997.
ANDRIOLA, W. B. ; CAVALCANTE L. R. Avaliação do raciocínio abstrato em estudantes do ensino médio. Estudos de Psicologia, v.4, p.23-37, 1999.
AL-HUBAIL, J.; AL-TEMEEMI, A.-S. Assessment of school building air quality in a desert climate. Building and Environment, v. 94, p. 569–579, 1 dez. 2015a.
AL-HUBAIL, J.; AL-TEMEEMI, A. S. Assessment of school building air quality in a desert climate. Building and Environment, v. 94, p. 569–579, 2015b.
Alcobia, C. Ergonomia Ambiental em Veículos. Dissertação para Doutoramento em Ciências de Engenharia Mecânica (Aerodinâmica). Faculdade de Ciência e Tecnologia da Universidade de Coimbra, Departamento de Engenharia Mecânica, Coimbra, 2016.
ALMEIDA, I. T. A poluição atmosférica por material particulado na mineração a céu aberto. Universidade de São Paulo, p. 194, 1999.
ALMEIDA, L. S.; NASCIMENTO, E.; LIMA, A. O. F.; VASCONCELOS, A. G.; AKAMA, C.T.; SANTOS, M.T. Bateria de provas de raciocínio (bpr-5): estudo exploratório em alunos universitários. Avaliação Psicológica, v.9, n.2, 2010.
ALMEIDA, L. S.; LEMOS, G. C. Aptidões cognitivas e rendimento académico: A validade preditiva dos testes de inteligência. Psicologia, Educação e Cultura Aptidões cognitivas e rendimento académico: A validade preditiva dos testes de inteligência, vol. IX, p.277-289, 2005.
ALMEIDA, L. S.; PRIMI, R. Perfis de capacidades cognitivas na bateria de provas de raciocínio (BPR-5). Psicologia Escolar e Educacional, v. 8, n. 2, p. 135–144, dez. 2004.
ALMEIDA, R. M. S. F.; DE FREITAS, V. P. Indoor environmental quality of classrooms in Southern European climate. Energy and Buildings, v. 81, p. 127–140, 2014.
ASHRAE 55. Thermal environmental conditions for human occupancy. American Society of Heating, Refrigerating and Air-conditioning Engineers Inc. Atlanta, GA, USA, 2004.
ANVISA. Resolução nº 899. Agência Nacional de Vigilância Sanitária, p. 1–15, 2003.
ARAÚJO, S. A. Perda auditiva induzida pelo ruído em trabalhadores de metalúrgica. Revista Brasileira de Otorrinolaringologia, v. 68, n. 1, p. 47–52, 2002.
ARBEX, M. A. et al. A poluição do ar e o sistema respiratório. Jornal Brasileiro de Pneumologia, v. 38, n. 5, p. 643–655, 2012.
ARGUNHAN, Z.; AVCI, A. S. Statistical Evaluation of Indoor Air Quality Parameters in Classrooms of a University. Advances in Meteorology, v. 2018, p. 1–10, 18 mar. 2018.
ASADI, I.; HUSSEIN, I.; PALANISAMY, K. Indoor Environmental Quality (IEQ) Acceptance of Air Conditioned Buildings in Malaysia: Case Study of Universiti Tenaga Nasional. Advanced Materials Research, v. 953–954, p. 1513–1519, 2014.
ASADI, I.; MAHYUDDIN, N.; SHAFIGH, P. A review on indoor environmental quality (IEQ) and energy consumption in building based on occupant behavior. Facilities, vol.35, p.684-695, 2017.
ASIF, A.; ZEESHAN, M.; JAHANZAIB, M. Indoor temperature, relative humidity and CO2 levels assessment in academic buildings with different heating, ventilation and air-conditioning systems. Building and Environment, v. 133, n. January, p. 83–90, 2018.
ASIYAI, R. Students’ Perception of the Condition of Their Classroom Physical Learning Environment and Its Impact on Their Learning and Motivation. College Student Journal, v. 48, n. n4, p. 716–726, 2014.
ASMAR, M. EL; CHOKOR, A.; SROUR, I. Are Building Occupants Satisfied with Indoor Environmental Quality of Higher Education Facilities? Energy Procedia, v. 50, p. 751–760, 2014.
ASTOLFI, A.; PELLEREY, F. Subjective and objective assessment of acoustical and overall environmental quality in secondary school classrooms. The Journal of the Acoustical Society of America, v. 123, n. 1, p. 163–173, 4 jan. 2008.
BAI, R.; LAM, J. C. K.; LI, V. O. K. A review on health cost accounting of air pollution in China. Environment International, v. 120, p. 279–294, 1 nov. 2018.
BAKÓ-BIRÓ, ZS.;CLEMENTS-CROOME, D.J.;KOCHHAR, N..;AWBI, H.B.;WILLIAMS, M. J. Ventilation rates in schools and pupils’ performance. Building and Environment, v. 48, p. 215–223, fev. 2012.
BARKMANN, C.; WESSOLOWSKI, N.; SCHULTE-MARKWORT, M. Applicability and efficacy of variable light in schools. Physiology and Behavior, v. 105, n. 3, p. 621–627, 2012a.
BARKMANN, C.; WESSOLOWSKI, N.; SCHULTE-MARKWORT, M. Applicability and efficacy of variable light in schools. Physiology & Behavior, v. 105, n. 3, p. 621–627, 1 fev. 2012b.
BATIZ, E. C. et al. Avaliação do conforto térmico no aprendizado: estudo de caso sobre influência na atenção e memória. Production, v. 19, n. 3, p. 477–488, 2009.
BELL, P. A. Effects of Noise and Heat Stress on Primary and Subsidiary Task Performance. Human Factors: The Journal of Human Factors and Ergonomics Society, v. 20, n. 6, p. 749–752, 1978.
BELLIA, L.; PEDACE, A.; BARBATO, G. Lighting in educational environments: An example of a complete analysis of the effects of daylight and electric light on occupants. Building and Environment, v. 68, p. 50–65, 1 out. 2013.
BERNARDI, N.; KOWALTOWSKI, D. C. C. K. Environmental comfort in school buildings: A case study of awareness and participation of users. Environment and Behavior, v. 38, n. 2, p. 155–172, 2006.
BESS, F. H.; DODD-MURPHY, J.; PARKER, R. A. Children with minimal sensorineural hearing loss: prevalence, educational performance, and functional status. Ear and hearing, v. 19, n. 5, p. 339–54, out. 1998.
BINS ELY, V.; TURKIENICZ, B. Método da grade de atributos: avaliando a relação entre usuário e ambiente. Ambiente Construído, v. 5, n. Jun. 2005, p. 77–88, 2005.
BLUYSSEN, P. M. Towards new methods and ways to create healthy and comfortable buildings. Building and Environment, v. 45, n. 4, p. 808–818, 2010.
BOWMAN, J. S.; VON BECKH, H. J. Physiologic and performance measurements in simulated airborne combined stress environments. Aviation Space and Environmental Medicine, v. 50, n. 6, p. 604–608, 1979.
BRASIL. Norma Regulamentadora no 9 - Programa de Prevenção de Riscos Ambientais. Ministério do Trabalho e Emprego, n. 9, p. 3–6, 2014.
BRICKUS, L. S. R.; DE, F. R.; NETO, A. A qualidade do ar de interiores e a química. Química Nova, v.22, p.65-74, 1999.
BURATTI, C.; RICCIARDI, P. Adaptive analysis of thermal comfort in university classrooms: Correlation between experimental data and mathematical models. Building and Environment, v. 44, n. 4, p. 674–687, abr. 2009.
CAO, B. et al. Field study of human thermal comfort and thermal adaptability during the summer and winter in Beijing. Energy and Buildings, v. 43, n. 5, p. 1051–1056, maio 2011.
CASTILLA, N. et al. Subjective assessment of university classroom environment. Building and Environment, v. 122, p. 72–81, 2017.
CAVALEIRO RUFO, J. et al. Indoor air quality and atopic sensitization in primary schools: A follow-up study. Porto Biomedical Journal, v. 1, n. 4, p. 142–146, 2016.
CENA, K.; DE DEAR, R. Thermal comfort and behavioural strategies in office buildings located in a hot-arid climate. Journal of Thermal Biology, v. 26, n. 4–5, p. 409–414, set. 2001.
CHUNG, T. M.; BURNETT, J. Lighting quality surveys in office premises. Indoor and Built Environment, v. 9, n. 6, p. 335–341, 2000.
CONCEIÇÃO, E. Z. E.; LÚCIO, M. M. J. R. Evaluation of thermal comfort conditions in a classroom equipped with radiant cooling systems and subjected to uniform convective environment. Applied Mathematical Modelling, v. 35, n. 3, p. 1292–1305, 2011.
CORDEIRO, G. M.; DEMÉTRIO, C. G. B. Modelos Lineares Generalizados e Extensões. Piracicaba: USP, 2008.
CORGNATI, S. P.; ANSALDI, R.; FILIPPI, M. Thermal comfort in Italian classrooms under free running conditions during mid seasons: Assessment through objective and subjective approaches. Building and Environment, v. 44, n. 4, p. 785–792, 2009a.
CORGNATI, S. P.; ANSALDI, R.; FILIPPI, M. Thermal comfort in Italian classrooms under free running conditions during mid seasons: Assessment through objective and subjective approaches. Building and Environment, v. 44, p. 785–792, 2009b.
CUI, W. et al. Influence of indoor air temperature on human thermal comfort, motivation and performance. Building and Environment, v.68, p. 114-122, 2013.
DA GRAÇA, V. A. C.; KOWALTOWSKI, D. C. C. K.; PETRECHE, J. R. D. An evaluation method for school building design at the preliminary phase with optimisation of aspects of environmental comfort for the school system of the State São Paulo in Brazil. Building and Environment, v. 42, n. 2, p. 984–999, 2007.
DAISEY, J. M.; ANGELL, W. J.; APTE, M. G. Indoor air quality, ventilation and health symptoms in schools: An analysis of existing information. Indoor Air, v.13, p.53-64, 2003.
DAMÁSIO, B. F. Contribuições da Análise Fatorial Confirmatória Multigrupo (AFCMG) na avaliação de invariância de instrumentos psicométricos. Psico-USF, v.18, n.2, p.211-220, 2013.
DASCALAKI, E. G. et al. Indoor environmental quality in Hellenic hospital operating rooms. Energy and Buildings, v. 41, n. 5, p. 551–560, 2009.
DE ABREU-HARBICH, L. V.; CHAVES, V. L. A.; BRANDSTETTER, M. C. G. O. Evaluation of strategies that improve the thermal comfort and energy saving of a classroom of an institutional building in a tropical climate. Building and Environment, v. 135, n. March, p. 257–268, 2018a.
DE ABREU-HARBICH, L. V.; CHAVES, V. L. A.; BRANDSTETTER, M. C. G. O. Evaluation of strategies that improve the thermal comfort and energy saving of a classroom of an institutional building in a tropical climate. Building and Environment, 2018b.
DENISE, L. et al. Modelagem com Equações Estruturais : Princípios Básicos e Aplicações. Salvador, 2012.
DIAS PEREIRA, L. et al. Assessment of indoor air quality and thermal comfort in Portuguese secondary classrooms: Methodology and results. Building and Environment, v. 81, p. 69–80, 2014.
DIAZ LOZANO PATINO, E.; SIEGEL, J. A. Indoor environmental quality in social housing: A literature review. Building and Environment, v. 131, p. 231–241, 2018.
DJONGYANG, NOËL;TCHINDA, RENÉ;NJOMO, D. Thermal comfort: A review paper. Renewable and Sustainable Energy Reviews, v. 14, n. 9, p. 2626–2640, dez. 2010.
DJONGYANG, N.; TCHINDA, R.; NJOMO, D. Thermal comfort: A review paper. Renewable and Sustainable Energy Reviews, v. 14, n. 9, p. 2626–2640, 2010.
DOBSON, A. J.; BARNETT, A. G. An Introduction to Generalized Linear Models. New York, Champman and Hall/CRC, 2008.
DORIZAS, P. V. et al. Correlation of particulate matter with airborne fungi in schools in Greece. International Journal of Ventilation, v. 12, n. 1, p. 1–15, 2013.
DUL, J.; WEERDMEESTER, B. Ergonomia prática. Edgard Blücher, 2004.
DUNCKO, R. et al. Working memory performance after acute exposure to the cold pressor stress in healthy volunteers. Neurobiology of Learning and Memory, v.91, n.4, p.377-381, 2009.
DUNN, R. et al. Light up Their Lives: A Review of Research on the Effects of Lighting on Children’s Achievement and Behavior. The Reading Teacher , v.38, n.9, p.863 -869, 1985.
E VASCONCELOS, C. S. F.; VILLAROUCO, V.; SOARES, M. M. Avaliação Ergonômica do Ambiente Construído: Estudo de caso em uma biblioteca universitária. Revista Ação Ergonômica, v. 4, n. 1, 2011.
ETTINGER, K. Direção e Produtividade. Direção, Organização e Administração de Empresas. Manual de Ensino 1. Manual de Ensino 1. 1a ed. São Paulo: IBRASA, 1964.
FABBRI, K. Thermal comfort evaluation in kindergarten: PMV and PPD measurement through datalogger and questionnaire. Building and Environment, v. 68, p. 202–214, out. 2013.
FARIA, L.; PEPI, A.; ALESI, M. Concepções pessoais de inteligência e auto-estima: Que diferenças entre estudantes portugueses e italianos? Análise Psicológica, v.22, n.4, p.747 - 764, 2004.
FÁVERO, L. P. L.; BELFIORE, P. P.; SILVA, F.L.; CHAN, B.L. Análise de dados: modelagem multivariada para tomada de decisões. [S.I: s.n], 2009.
FELICETTI, V. L. Comprometimento do estudante: um elo entre aprendizagem e inclusão social na qualidade da educação superior. Tese (Doutorado em Educação) - Pontifícia Universidade Católica do Rio Grande do Sul, Porto Alegre, 2011.
FERREIRA, M. D. L. Ciclos de comutação de uma lâmpada até ao seu fim de vida-Investigação, construção e implementação de uma ferramenta de análise. Dissertação (Mestrado em Ciências da engenharia e tecnologias) - Faculdade de Engenharia da Universidade do Porto, Porto, 2015.
FIGUEIRA, M. M. A. Assistência fisioterapia à criança portadora de cegueira congênita. Revista Benjamim Constant, Rio de Janeiro, n.5, p.8 - 23, 1996,
FLEMING, D. B.; GRIFFIN, M. J. A study of the subjective equivalence of noise and whole-body vibration. Journal of Sound and Vibration, v. 42, n. 4, p. 453–461, 1975.
FRONTCZAK, M.; WARGOCKI, P. Literature survey on how different factors influence human comfort in indoor environments. Building and Environment, v. 46, n. 4, p. 922–937, 2011.
FUOCO, F. et al. Indoor Air Quality in Naturally Ventilated Italian Classrooms. Atmosphere, v. 6, n. 11, p. 1652–1675, 2 nov. 2015.
GATTO PEREIRA, J. L. et al. Poluição Do Ar Por Material Particulado Em Área Intraurbana No Rio De Janeiro: Alguns Aspectos Metodológicos. REEC - Revista Eletrônica de Engenharia Civil, v. 10, n. 3, 2015.
GENTILE, N. et al. A field study of fluorescent and LED classroom lighting. Lighting Research & Technology, v. 50, n. 4, p. 631–650, 25 jun. 2016.
GRANDJEAN, E. (ETIENNE). Fitting the task to the man : a textbook of occupational ergonomics. [s.l.] Taylor & Francis, 1988.
GRETHER, W. F. Vibration and Human Performance. Human Factors: The Journal of the Human Factors and Ergonomics Society, v. 13, n. 3, p. 203–216, 25 jun. 1971.
GUSKI, R.; FELSCHER-SUHR, U.; SCHUEMER, R. The concept of noise annoyance: How international experts see it. Journal of Sound and Vibration, v. 223, n. 4, p. 513–527, 1999.
HADDAD, S.; OSMOND, P.; KING, S. Revisiting thermal comfort models in Iranian classrooms during the warm season. Building Research and Information, v. 45, n. 4, p. 457–473, 2017.
HAIR JR., J. F. et al. Análise FatorialAnálise Multivariada de Dados. [S.I: s.n], 2005.
HALDI, F.; ROBINSON, D. On the unification of thermal perception and adaptive actions. Building and Environment, v.45, n.11, p. 2440 - 2457, 2010.
HARRINGTON, D. Confirmatory Factor Analysis. New York, Oxford University Press, 2009.
HATHAWAY, W. E. Effects of School Lighting on Physical Development and School Performance. The Journal of Educational Research, v.88, p.228-242, 2010.
HAVERINEN-SHAUGHNESSY, U. et al. An assessment of indoor environmental quality in schools and its association with health and performance. Building and Environment, v. 93, p. 35–40, 1 nov. 2015.
HEDGE, A. Where are we in understanding the effects of where we are? Ergonomics, v. 43, n. 7, p. 1019–29, 2000.
HILL, M. C.; EPPS, K. K. Does Physical Classroom Environment Affect Student Performance , Student Satisfaction , and Student Evaluation of Teaching in the College Environment ? Evaluation, v. 14, n. 1, p. 15–20, 2009.
HIRASHIMA, S. Q. DA S.; ASSIS, E. S. DE; NIKOLOPOULOU, M. Daytime thermal comfort in urban spaces: A field study in Brazil. Building and Environment, v. 107, p. 245–253, 2016.
HOQUE, S.; WEIL, B. THE RELATIONSHIP BETWEEN COMFORT PERCEPTIONS AND ACADEMIC PERFORMANCE IN UNIVERSITY CLASSROOM BUILDINGS. Journal of Green Building, v. 11, n. 1, p. 108–117, 1 mar. 2016.
HUANG, L. et al. A study on the effects of thermal, luminous, and acoustic environments on indoor environmental comfort in offices. Building and Environment, v. 49, n. 1, p. 304–309, 2012a.
HUMPHREYS, R. M. A. An adaptive approach to the thermal comfort of office workers in North West Pakistan. Renewable Energy, v. 5, n. 5–8, p. 985–992, ago. 1994.
HUNDLEBY, J. D.; NUNNALLY, J. Psychometric Theory. American Educational Research Journal, 1968.
HUSSIN, M.;ISMAIL, M.R.;AHMAD, M. S. Subjective Perception of Thermal Comfort Study in Air-conditioned University Laboratories. Procedia - Social and Behavioral Sciences, v. 91, p. 192–200, out. 2013.
HWANG, R.-L.; LIN, T.-P.; KUO, N.-J. Field experiments on thermal comfort in campus classrooms in Taiwan. Energy and Buildings, v. 38, n. 1, p. 53–62, jan. 2006.
HYGGE, S. Classroom experiments on the effects of different noise sources and sound levels on long-term recall and recognition in children. Applied Cognitive Psychology, v. 17, n. 8, p. 895–914, 2003.
HYGGE, S.; KNEZ, I. EFFECTS OF NOISE, HEAT AND INDOOR LIGHTING ON COGNITIVE PERFORMANCE AND SELF-REPORTED AFFECT. Journal of Environmental Psychology, v. 21, n. 3, p. 291–299, 1 set. 2001.
IAZZETTA, F. Tutoriais de Áudio e Acústica. Departamento de Música da ECA-USP. Disponível em http://www.eca.usp.br/prof/iazzetta/tutor/. Acesso em 20/01/2019.
IGNÁCIO, S. A. Importância da Estatística para o Processo de Conhecimento e Tomada de Decisão. Revista Paranaense de Desenvolvimento, Curitiba, n.118, 2010.
IIDA, I. Ergonomia: projeto e produção. Editora Edgard Blucher, 2ª ed., São Paulo, 2005.
IIDA, I. Ergonomia: projeto e produção. Editora Edgard Blucher, 3a ed. São Paulo: 2016.
INDRAGANTI, M. Adaptive use of natural ventilation for thermal comfort in Indian apartments. Building and Environment, v. 45, n. 6, p. 1490–1507, jun. 2010.
International Ergonomics Association. Ergonomics, v. 6, n. 1, p. 108, 1963.
INTERNATIONAL ERGONOMICS ASSOCIATION (IEA). Definition and Domains of Ergonomics. Disponível em: <https://www.iea.cc/whats/>. Acesso em: 29 jun. 2018.
ISMAILA, S. O.; SAMUEL, T. M. Human-centered engineering: The challenges of Nigerian engineer. Journal of Engineering, Design and Technology, v.12, n.2, p.195-208, 2014.
JABER, A. R.; DEJAN, M.; MARCELLA, U. The Effect of Indoor Temperature and CO2 Levels on Cognitive Performance of Adult Females in a University Building in Saudi Arabia. Energy Procedia, v.122, p.451-456, 2017.
JALIL, N. A. A.; DIN, N. B. C.; DAUD, N. I. M. K. A literature analysis on acoustical environment in Green Building design strategies. Applied Mechanics and Materials, v.471, p.138-142, 2013.
JAMALUDIN, N. M.; MAHYUDDIN, N.; AKASHAH, F. W. Assessment of Indoor Environmental Quality (IEQ): Students Well-Being in University Classroom with the Application of Landscaping. MATEC Web of Conferences, v. 66, n.1, 2016.
JIANG, J. et al. A study on pupils’ learning performance and thermal comfort of primary schools in China. Building and Environment, v. 134, p. 102–113, 15 abr. 2018.
JOHNSON, D. L. et al. Indoor air quality in classrooms: Environmental measures and effective ventilation rate modeling in urban elementary schools. Building and Environment, v. 136, p. 185–197, 2018.
JONES, A. P. Indoor air quality and health. Atmospheric Environment, v. 33, n. 28, p. 4535–4564, 1 dez. 1999.
JURADO, S. R.; BANKOFF, A. D. P.; SANCHEZ, A. Indoor air quality in Brazilian universities. International Journal of Environmental Research and Public Health, v. 11, n. 7, p. 7081–7093, 2014.
KALIMERI, K. K. et al. Indoor air quality investigation of the school environment and estimated health risks: Two-season measurements in primary schools in Kozani, Greece. Atmospheric Pollution Research, v. 7, n. 6, p. 1128–1142, 1 nov. 2016.
KAWADA, T. Noise and health--sleep disturbance in adults. Journal of occupational health, v. 53, n. 6, p. 413–6, 2011.
KIM, J.; DE DEAR, R. Nonlinear relationships between individual IEQ factors and overall workspace satisfaction. Building and Environment, 2012.
KLATTE, M.; LACHMANN, T.; MEIS, M. Effects of noise and reverberation on speech perception and listening comprehension of children and adults in a classroom-like setting. Noise and Health, v. 12, n. 49, p. 270, 2010.
KORSAVI, S. S.; ZOMORODIAN, Z. S.; TAHSILDOOST, M. Visual comfort assessment of daylit and sunlit areas: A longitudinal field survey in classrooms in Kashan, Iran. Energy and Buildings, v. 128, p. 305–318, 2016.
KRAWCZYK, D. A. et al. CO2concentration in naturally ventilated classrooms located in different climates—Measurements and simulations. Energy and Buildings, v. 129, p. 491–498, 2016.
LAN, L. et al. Neurobehavioral approach for evaluation of office workers’ productivity: The effects of room temperature. Building and Environment, 2009.
LAN, L.; LIAN, Z.; PAN, L. The effects of air temperature on office workers’ well-being, workload and productivity-evaluated with subjective ratings. Applied Ergonomics, v. 42, n. 1, p. 29–36, 2010.
LAN, L.; WARGOCKI, P.; LIAN, Z. Quantitative measurement of productivity loss due to thermal discomfort. Energy and Buildings, v. 43, n. 5, p. 1057–1062, 1 maio 2011b.
LARRA, M. F. et al. Heart rate response to post-learning stress predicts memory consolidation. Neurobiology of Learning and Memory, v. 109, p.74-81, 2014.
LEE, M. C. et al. Student learning performance and indoor environmental quality (IEQ) in air-conditioned university teaching rooms. Building and Environment, v. 49, n. 1, p. 238–244, 2012.
LEMOS, G. C. E. M. P. et al. O impacto das variáveis cognitivas no rendimento escolar. X Congresso Internacional Galego-Português de Psiopedagoia, p.4524 - 4535. Braga: Universidade do Minho.
LEMOS, G. et al. Inteligência e rendimento escolar: análise da sua relação ao longo da escolaridade. Revista Portuguesa de Educação, v.21, n.1, p.83-99, 2008.
LEVAK, K.; HORVAT, M.; DOMITROVIC, H. Effects of Noise on Humans. 50th International Symposium ELMAR-2008, p. 333–336, 2008.
LIU, Y. et al. The indoor thermal environment of rural school classrooms in Northwestern China. Indoor and Built Environment, v. 26, n. 5, p. 662–679, 7 jun. 2017.
LOFTNESS, V. et al. Elements that contribute to healthy building design. Environmental health perspectives, v. 115, n. 6, p. 965–70, jun. 2007.
LOMOV, B.; VENDA, V. La Interrelacion Hombre Maquina En los Sistemas de Informacion. Moscou: Progreso, 1983.
LOURENÇO, A. A.; PAIVA, M. O. A. DE. A motivação escolar e o processo de aprendizagem. Ciências Cognição, v. 15, n. 2, p. 132–141, 2010.
MADUREIRA, J. et al. Indoor air quality in schools and its relationship with children’s respiratory symptoms. Atmospheric Environment, v. 118, p. 145–156, 1 out. 2015.
MAGALHÃES, L. C. Estudo do material particulado atmosférico e metais associados às partículas totais em suspensão na cidade de ouro preto, mg. Dissertação (Mestrado). Universidade Federal de Minas Gerais: Engenharia Ambiental, Ouro Preto: Minhas Gerais, 2005.
MAGALHÃES, M. R. A arquitectura paisagista : morfologia e complexidade. Editorial Estampa, Lisboa, 525 pp., 2001.
MAK, C. M.; LUI, Y. P. The effect of sound on office productivity. Building Services Engineering Research and Technology, v. 33, n. 3, p. 339–345, 2012.
MALLICK, F. H. Thermal comfort and building design in the tropical climates. Energy and Buildings, v. 23, n. 3, p. 161–167, mar. 1996.
MANIGRASSO, M. et al. Ultrafine particles in domestic environments: Regional doses deposited in the human respiratory system. Environment International, v. 118, p. 134–145, 2018.
MARCHAND, G. C. et al. The impact of the classroom built environment on student perceptions and learning. Journal of Environmental Psychology, v. 40, p. 187–197, 1 dez. 2014.
MARCHESAN, I. Q. Avaliação e terapia dos problemas da respiração. Fundamentos em fonoaudiologia: aspectos clínicos da motrocidade oral. Rio de Janeiro: Guanabara Koogan, p.23-36, 1998.
MARQUES, R.; DUTRA, I. Redes Bayesianas: o que são, para que servem, algoritmos e exemplos de aplicações. Coppe Sistemas–Universidade Federal do Rio de Janeiro, 2002.
MÁSCULO, F. S.; VIDAL, M. C. Ergonomia - Trabalho Adequado e Eficiente. São Paulo: Editora Atlas, 2009.
MASINI, E. F. S. A educação do portador de deficiência visual: as perspectivas do vidente e do não vidente. Aberto, p. 61–76, 1994.
MENDELL, M. J.; HEATH, G. A. Do indoor pollutants and thermal conditions in schools influence student performance? A critical review of the literature. Indoor Air, v. 15, n. 1, p. 27–52, jan. 2005.
MENDES, R. Patologia do trabalho. 3 o Edição ed. São Paulo: Editora Atheneu 2013a.
MIGUEL, A. S. S. . Manual de Higiene e Seguranca do Trabalho. 13a Edição ed. Porto: [s.n.].
MIGUEL, S. R.; SÉRGIO, A. Manual de Higiene e Seguranca do Trabalho. 13a ed. Porto, Porgugal: 2012.
MINAYO, M. C. DE S.; SANCHES, O. Quantitativo-qualitativo: oposição ou complementaridade? Cadernos de Saúde Pública, v. 9, n. 3, p. 237–248, 1993.
MIRANDA, I. K. A ergonomia no sistema organizacional ferroviário. Revista brasileira de saúde ocupacional, v.8, p. 63, -70, 1980.
MISHRA, A. K. et al. Analysing thermal comfort perception of students through the class hour, during heating season, in a university classroom. Building and Environment, v. 125, p. 464–474, 15 nov. 2017.
MISHRA, A. K.; RAMGOPAL, M. Thermal comfort field study in undergraduate laboratories - An analysis of occupant perceptions. Building and Environment, v. 76, p. 62–72, jun. 2014.
MONTEIRO, J. K.; ANDRADE, C. G. Avaliação do raciocínio abstrato, numérico e espacial em adolescentes surdos. Aletheia, n.21, p.93-99, 2005.
MORAES, A. P. DE. Qualidade do ar interno com ênfase na concentração de aerodispersóides nos edifícios. São Paulo: Biblioteca Digital de Teses e Dissertações da Universidade de São Paulo, 28 jun. 2006.
MORS, S. TER et al. Adaptive thermal comfort in primary school classrooms: Creating and validating PMV-based comfort charts. Building and Environment, v. 46, n. 12, p. 2454–2461, dez. 2011.
MUMOVIC, D. et al. Winter indoor air quality, thermal comfort and acoustic performance of newly built secondary schools in England. Building and Environment, v. 44, n. 7, p. 1466–1477, jul. 2009.
NAGANO, K.; HORIKOSHI, T. New comfort index during combined conditions of moderate low ambient temperature and traffic noise. Energy and Buildings, v.37, n.3, p. 287-294, 2005.
NEMATCHOUA, MODESTE KAMENI;TCHINDA, RENÉ;OROSA, J. A. Adaptation and comparative study of thermal comfort in naturally ventilated classrooms and buildings in the wet tropical zones. Energy and Buildings, v. 85, p. 321–328, dez. 2014.
NIEMELÄ, R. et al. The effect of air temperature on labour productivity in call centres - A case study. Energy and Buildings, v.34, n.8, p.759-764, 2002.
NIMLYAT, P. S.; KANDAR, M. Z.; SEDIADI, E. Multitrait-multimethod analysis of subjective and objective methods of indoor environmental quality assessment in buildings. Building Simulation, v. 11, n. 2, p. 347–358, 23 abr. 2018.
NIX, E. et al. Indoor Environmental Quality of Low-Income Housing in Delhi, India: Findings from a Field Study. Energy Procedia, v. 78, p. 495–500, 1 nov. 2015.
OLE FANGER, P.; TOFTUM, J. Extension of the PMV model to non-air-conditioned buildings in warm climates. Energy and Buildings, v. 34, n. 6, p. 533–536, jul. 2002.
OLIVEIRA, C. R. D.; ARENAS, G. W. N. Occupational exposure to noise pollution in anesthesiology. Revista brasileira de anestesiologia, v. 62, n. 2, p. 253–61, 2012.
PÄÄKKÖNEN, R. et al. Acoustics and new learning environment - A case study. Applied Acoustics, v. 100, p. 74–78, 2015.
PAIS, A. M. G. Condições de iluminação em ambiente de escritório : influência no conforto visual. Dissertação (Mestrado), Universidade Técnica de Lisboa, 2011.
PARSONS, K. C. Environmental ergonomics: A review of principles, methods and models. Applied Ergonomics, v.31, n.6, p. 581 - 594, 2000.
PELLERIN, N.; CANDAS, V. Combined effects of temperature and noise on human discomfort. Physiology and Behavior, v.78, n.1, p.99 - 106, 2003.
PENG, J.; ZHANG, H.; WANG, D. Measurement and analysis of teaching and background noise level in classrooms of Chinese elementary schools. Applied Acoustics, v. 131, p. 1–4, 1 fev. 2018.
PENG, Z.; DENG, W.; TENORIO, R. Investigation of Indoor Air Quality and the Identification of Influential Factors at Primary Schools in the North of China. Sustainability, v. 9, n. 7, p. 1180, 2017.
PILATI, R.; LAROS, J. A. Modelos de equações estruturais em psicologia: Conceitos e aplicações. Psicologia: Teoria e Pesquisa, 2007.
PISTORE, L. et al. Assessment of the IEQ in Two High Schools by Means of Monitoring, Surveys and Dynamic Simulation. Energy Procedia, v. 82, p. 519–525, 1 dez. 2015.
POPE III, C. A.; DOCKERY, D. W. Health Effects of Fine Particulate Air Pollution: Lines that Connect. Journal of the Air & Waste Management Association, v. 56, p. 709–742, 2006.
PRIMI, R. Inteligência: Avanços nos Modelos Teóricos e nos Instrumentos de Medida. Avaliação Psicológica, v. 1, n. 1, p. 67–77, 2003.
PRIMI, R. et al. Intelligence, age and schooling: data from the Battery of Reasoning Tests (BRT-5). Psicologia: Reflexão e Crítica, v. 25, n. 1, p. 79–88, 2012.
PRIMI, R.; ALMEIDA, L. S. Estudo de Validação da Bateria de Provas de Raciocínio (BPR-5). Psicologia: Teoria e Pesquisa, v. 16, n. 2, p. 165–173, 2000.
PRODANOV, C. C.; DE FREITAS, E. C. Metodologia do Trabalho Cientifico: Métodos e Técnicas da Pesquisa e do Trabalho Acadêmico. 2a ed. Feevale, Novo Hamburgo, Rio Grande do Sul: 2009.
PUTEH, MARZITA;IBRAHIM, MOHD HAIRY;ADNAN, MAZLINI;CHE’AHMAD, CHE NIDZAM;NOH, N. M. Thermal Comfort in Classroom: Constraints and Issues. Procedia - Social and Behavioral Sciences, v. 46, p. 1834–1838, 2012.
RAMPRASAD, V.; SUBBAIYAN, G. Perceived indoor environmental quality of classrooms and outcomes: a study of a higher education institution in India. Architectural Engineering and Design Management, v. 13, n. 3, p. 202–222, 4 maio 2017.
REBELO, F. Ergonomia no Dia a Dia. 2a ed. Lisboa: Edilçies Sílabo Ltda, 2017.
RIBEIRO, C. Metacognição: Um Apoio ao Processo de Aprendizagem. Psicologia: Reflexão e Crítica, v. 16, n. 1, p. 109–116, 2003.
RICCIARDI, P.; BURATTI, C. Environmental quality of university classrooms: Subjective and objective evaluation of the thermal, acoustic, and lighting comfort conditions. Building and Environment, v. 127, p. 23–36, 1 jan. 2018.
RICHARDSON, R. J. Pesquisa Social, métodos e técnicas. São Paulo: Editora Atlas, 2010.
RUI, L.R.; STEFFANI, M.H. Física: Som e audição humana. XVII Simpósio Nacional de Física, Universidade Federal do Rio Grande do Sul. Disponível em: <http://www.cienciamao.uspb.br/dados/snef/_fisicasomeaudicaohumana.trabalho.pdf> Acesso em: 14 de março de 2019.
RUSSO, I. C. P. (IÊDA C. P. Acústica e psicoacústica : aplicadas à fonoaudiologia. [s.l.] Editora Lovise, 1993.
SAKHARE, V. V.; RALEGAONKAR, R. V. Indoor environmental quality: Review of parameters and assessment models. Architectural Science Review, v.57, n.2, p.147 -154, 2014.
SARBU, I.; PACURAR, C. Experimental and numerical research to assess indoor environment quality and schoolwork performance in university classrooms. Building and Environment, v. 93, p. 141–154, nov. 2015a.
SARBU, I.; PACURAR, C. Experimental and numerical research to assess indoor environment quality and schoolwork performance in university classrooms. Building and Environment, v. 93, p. 141–154, 1 nov. 2015b.
SCANNELL, L. et al. The Role of Acoustics in the Perceived Suitability of, and Well-Being in, Informal Learning Spaces. Environment and Behavior, v. 48, n. 6, p. 769–795, 2014.
SCHULZ, J. Lighting and the learning space. OSSC Bulletin, v. 21, n. 2, p. 43, 1977.
SERGHIDES, D. K.; CHATZINIKOLA, C. K.; KATAFYGIOTOU, M. C. Comparative studies of the occupants’ behaviour in a university building during winter and summer time. International Journal of Sustainable Energy, v. 34, n. 8, p. 528–551, 2015.
SHAUGHNESSY, R. et al. Indoor environmental quality in schools and academic performance of students: Studies from 2004 to present. IAQ Conference, Healthy amd Sustainable Buildings, Baltimore, USA, 2008.
SHIELD, B. et al. A survey of acoustic conditions and noise levels in secondary school classrooms in England. The Journal of the Acoustical Society of America, v. 137, n. 1, p. 177–188, 2015.
SHIELD, B. M.; DOCKRELL, J. E. The Effects of Noise on Children at School: A Review. Building Acoustics, v. 10, n. 2, p. 97–116, 2003.
SINGH, M. K. et al. Status of thermal comfort in naturally ventilated classrooms during the summer season in the composite climate of India. Building and Environment, v.128, p. 287 - 304, 2018.
SOARES, C. S. F. V. V. M. M. AVALIAÇÃO ERGONÔMICA DO AMBIENTE CONSTRUÍDO : Estudo de caso em uma biblioteca universitária . Ação Ergonômica, v. 4, n. 1, p. 5–25, 2009.
SOUZA, L. F. N. I. DE. Estratégias de aprendizagem e fatores motivacionais relacionados. Educar em Revista, n. 36, p. 95–107, 2010.
SPENGLER, J.; SEXTON, K. Indoor air pollution: a public health perspective. Science, v. 221, n. 4605, p. 9–17, 1 jul. 1983.
STABILE, L. et al. Effect of natural ventilation and manual airing on indoor air quality in naturally ventilated Italian classrooms. Building and Environment, v. 98, p. 180–189, 1 mar. 2016.
STESKENS, P. W. M. H.; LOOMANS, M. G. L. C. Performance indicators for health, comfort and safety of the indoor environment. Proceedings clima - 10th RHVA Word Congress, 2010.
STEVANOVIĆ, Ž. Ž. et al. CFD simulations of thermal comfort in naturally ventilated primary school classrooms. Thermal Science, v. 20, 2016.
TELI, DESPOINA;JENTSCH, MARK F.;JAMES, P. A. B. Naturally ventilated classrooms: An assessment of existing comfort models for predicting the thermal sensation and preference of primary school children. Energy and Buildings, v. 53, p. 166–182, out. 2012.
TELI, D.; JENTSCH, M. F.; JAMES, P. A. B. Naturally ventilated classrooms: An assessment of existing comfort models for predicting the thermal sensation and preference of primary school children. Energy and Buildings, v. 53, p. 166–182, 2012.
TER MORS, S. et al. Adaptive thermal comfort in primary school classrooms: Creating and validating PMV-based comfort charts. Building and Environment, v. 46, n. 12, p. 2454–2461, 2011.
THAM, K. W. Effects of temperature and outdoor air supply rate on the performance of call center operators in the tropics. Indoor Air, v.14, p.119-125, 2004.
THAM, K. W. Indoor air quality and its effects on humans—A review of challenges and developments in the last 30 years. Energy and Buildings, v. 130, p. 637–650, 2016.
THAM, K. W.; WILLEM, H. C. Room air temperature affects occupants’ physiology, perceptions and mental alertness. Building and Environment, 2010.
TO, W. M.; MAK, C. M.; CHUNG, W. L. Are the noise levels acceptable in a built environment like Hong Kong? Noise and Health, v. 17, n. 79, p. 429–439, 2015.
TOFTUM, J. et al. Association between classroom ventilation mode and learning outcome in Danish schools. Building and Environment, v. 92, p. 494–503, 2015.
TREICHEL, A. J. School lights and problem pupils. Science News, v. 105, n. 16, p. 258–259, 1974.
TRICKETT, E. J.; MOOS, R. H. Social environment of junior high and high school classrooms. Journal of Educational Psychology, v. 65, n. 1, p. 93–102, 1973.
TROMPETTER, W. J. et al. The effect of ventilation on air particulate matter in school classrooms. Journal of Building Engineering, v. 18, p. 164–171, 1 jul. 2018.
TURKMAN, M. A. A.; SILVA, G. L. Modelos Lineares Generalizados-da teorià a prática. [s.l: s.n.]. Disponível em: <https://docs.ufpr.br/~taconeli/CE225/tp.pdf>. Acesso em: 4 out. 2018.
TURUNEN, M. et al. Indoor environmental quality in school buildings, and the health and wellbeing of students. International Journal of Hygiene and Environmental Health, v. 217, n. 7, p. 733–739, 2013.
UZELAC, A.; GLIGORIC, N.; KRCO, S. A comprehensive study of parameters in physical environment that impact students’ focus during lecture using Internet of Things. Computers in Human Behavior, v. 53, p. 427–434, 2015.
VAN DIJKEN, F.; VAN BRONSWIJK, J. E. M. H.; SUNDELL, J. Indoor environment and pupils’ health in primary schools. Building Research and Information, v. 34, n. 5, p. 437–446, 2006.
VASCONCELOS, M. M. et al. Contribuição dos fatores de risco psicossociais para o transtorno de déficit de atenção/hiperatividade. Arq Neuropsiquiatr, v.63, n.1, p. 68- 74, 2005.
VILCEKOVA, S. et al. Indoor environmental quality of classrooms and occupants’ comfort in a special education school in Slovak Republic. Building and Environment, v. 120, p. 29–40, 2017.
WALBERG, H. J.; ANDERSON, G. J. Classroom climate and individual learning. Journal of Educational Psychology, v. 59, n. 6 PART 1, p. 414–419, 1968.
WALDRIP, B. G.; FISHER, D. L. Identifying exemplary science teachers through their classroom interactions with students. Learning Environments Research, v. 6, n. 2, p. 157–174, 2003.
WANG, ZHAOJUN;LI, AIXUE;REN, JING;HE, Y. Thermal adaptation and thermal environment in university classrooms and offices in Harbin. Energy and Buildings, v. 77, p. 192–196, jul. 2014.
WANG, D. et al. Student responses to classroom thermal environments in rural primary and secondary schools in winter. Building and Environment, v. 115, p. 104–117, abr. 2017.
WANG, Z. A field study of the thermal comfort in residential buildings in Harbin. Building and Environment, v. 41, n. 8, p. 1034–1039, ago. 2006.
WARGOCKI, P. What are indoor air quality priorities for energy-efficient buildings? Indoor and Built Environment, v. 24, n. 5, p. 579–582, 2015.
WARGOCKI, P.; PORRAS-SALAZAR, J. A.; CONTRERAS-ESPINOZA, S. The relationship between classroom temperature and children’s performance in school. Building and Environment, v.157, p.197 - 204, 2019.
WARGOCKI, P.; WYON, D. P. The effects of moderately raised classroom temperatures and classroom ventilation rate on the performance of schoolwork by children (RP-1257). HVAC and R Research, v. 13, n. 2, p. 193–220, 2007.
WHO. Health Effects of Particulate Matter: Policy implications for countries in eastern Europe, Caucasus and central Asia. Journal of the Korean Medical Association, v. 50, n. 2, p. 20, 2013.
WILSON, J. R. Fundamentals of ergonomics in theory and practice. Applied ergonomics, v. 31, n. 6, p. 557–67, dez. 2000.
WILSON, J. R. Fundamentals of systems ergonomics/human factors. Applied Ergonomics, v. 45, n. 1, p. 5–13, jan. 2014.
WINTERBOTTOM, M.; WILKINS, A. Lighting and discomfort in the classroom. Journal of Environmental Psychology, v. 29, n. 1, p. 63–75, 1 mar. 2009.
WISNER, A. Por Dentro do Trabalho: Ergonomia, método e técnica. São Paulo: FTD/Oboré, 189 p., 1987.
WONG, N. H.; KHOO, S. S. Thermal comfort in classrooms in the tropics. Energy and Buildings, v. 35, n. 4, p. 337–351, maio 2003.
WOOD, P. Confirmatory Factor Analysis for Applied Research. The American Statistician, v.62, 2008.
WHO, WORLD HEALTH ORGANIZATION. Comparative quantification of health risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors, 2004. Disponível em: <http://www.who.int/publications/cra/en/> Acesso em: 12/02/2019.
WU, Q.; HAO, Y.; LU, J. Air pollution, stock returns, and trading activities in China. Pacific-Basin Finance Journal, v. 51, p. 342–365, 1 out. 2018.
YANG, D.; MAK, C. M. An assessment model of classroom acoustical environment based on fuzzy comprehensive evaluation method. Applied Acoustics, v. 127, p. 292–296, 2017.
YANG RAZALI, N. Y. et al. Concentration of particulate matter, CO and CO2in selected schools inMalaysia. Building and Environment, v. 87, p. 108–116, 2015a.
YANG RAZALI, N. Y. et al. Concentration of particulate matter, CO and CO2in selected schools inMalaysia. Building and Environment, v. 87, p. 108–116, 2015b.
YANG, W.; MOON, H. J. Combined effects of acoustic, thermal, and illumination conditions on the comfort of discrete senses and overall indoor environment. Building and Environment, v.148, p.623 - 633, 2019.
YANG, Z.; BECERIK-GERBER, B.; MINO, L. A study on student perceptions of higher education classrooms: Impact of classroom attributes on student satisfaction and performance. Building and Environment, v. 70, p. 171–188, 2013a.
YANG, Z.; BECERIK-GERBER, B.; MINO, L. A study on student perceptions of higher education classrooms: Impact of classroom attributes on student satisfaction and performance. Building and Environment, v. 70, p. 171–188, 1 dez. 2013b.
YOON, C.; LEE, K.; PARK, D. Indoor air quality differences between urban and rural preschools in Korea. Environmental Science and Pollution Research, v. 18, n. 3, p. 333–345, 2011.
YUN, HYUNJUN;NAM, INSICK;KIM, JINMAN;YANG, JINHO;LEE, KYOUNGHO;SOHN, J. A field study of thermal comfort for kindergarten children in Korea: An assessment of existing models and preferences of children. Building and Environment, v. 75, p. 182–189, maio 2014.
ZAKI, S. A. et al. Adaptive thermal comfort in university classrooms in Malaysia and Japan. Building and Environment, v. 122, p. 294–306, 2017a.
ZAKI, S. A. et al. Adaptive thermal comfort in university classrooms in Malaysia and Japan. Building and Environment, v. 122, p. 294–306, 2017b.
ZIMMERMAN, J. R. S. Indoor Air Quality Guidelines for Pennsylvania Schools. Pennsylvania Departmente of Health, Harrisburg, Pa, USA, 1999.
ZOMORODIAN, Z. S.; TAHSILDOOST, M.; HAFEZI, M. Thermal comfort in educational buildings: A review article. Renewable and Sustainable Energy Reviews, v.59, p. 895 - 906, 2016.
ZUHAIB, S. et al. An Indoor Environmental Quality (IEQ) assessment of a partially-retrofitted university building. Building and Environment, v. 139, p. 69–85, 2018.

Downloads

Publicado

dezembro 18, 2020

Detalhes sobre essa publicação

ISBN-13 (15)

978-65-5942-064-3